Литература

Аллен К.У. Астрофизические величины // М. : Мир, 1977. – 447 с.

Бронштэн В.А. Физика метеорных явлений // М. : Наука, 1981. – 416 с.

Карташова А.П., Рыбнов Ю.С., Глазачев Д.О., Попова О.П., Болгова Г.Т. Изучение метеорных явлений по комбинированным наблюдениям / Триггерные эффекты в геосистемах: материалы IV-й Всероссийской конференции с международным участием (Москва, 6-9 июня 2017 г.). ИДГ РАН. М. : ГЕОС, . 2017. С. 483–489.

Лебединец В.Н. Пыль в верхней атмосфере и космическом пространстве // Метеоры. Л. : Гидрометеоиздат, 1980. – 247 с.

Стулов В.П., Мирский В.Н., Вислый А.И. Аэродинамика болидов. М. : Наука. Физматлит, 1995. – 240 с.

Babadzhanov, P.B. 2002. Fragmentation and densities of meteoroids. Astron. Astrophys., 384(1), 317{321.

Campbell-Brown, M.D., and Koschny, D. 2004.Model of the ablation of faint meteors. Astron.Astrophys.,418, 751-758.

Moses, J.I. 1992. Meteoroid ablation in Neptune's atmosphere. Icarus, 99, 368-383.

Stokan, E, Campbell-Brown, M.D. 2015. A particle-based model for ablation and wake formation in faint meteors. Mon. Not. R. Astron. Soc., 447, 1580-1597.

Subasinghe, D., Campbell-Brown, M., and Stokan, E. 2017. Luminous efficiency estimates of meteors -I. Uncertainty analysis. Planet. Space Sci., 143, 71-77.

УДК 533:95.3:550.338.2:550.388:.8:553.51

НЕЛОКАЛЬНЫЕ ГЕОМАГНИТНЫЕ ЭФФЕКТЫ ПРИ ПАДЕНИИЛИПЕЦКОГО (21.06.2018 г.) И ЧЕЛЯБИНСКОГО (15.02.2013 г.) МЕТЕОРИТОВ

А.А. Спивак, С.А. Рябова

ИДГ РАН

На примере Челябинского (13.02.2013 г.) и Липецкого (21.06.2018 г.) событий рассмотрены геомагнитные вариации, сопровождающие падение метеоритов в атмосфере Земли. С использованием данных инструментальных наблюдений, выполненных в ряде магнитных обсерваторий международной сети станций ИН-ТЕРМАГНЕТ и в Геофизической обсерватории «Михнево» ИДГ РАН, показано, что в целом падение метеоритов вызывает изменение модуля вектора магнитной индукции на величину до ~ 3,5 нГл вне зависимости от расстояния до места падения космического тела. При этом горизонтальные компоненты магнитной индукции уменьшаются с амплитудой до ~ 8 нГл. Геомагнитный эффект от падения метеоритов наблюдается на расстояниях до 2700 км. Предложена зависимость длительности вызванных вариаций модуля магнитной индукции от расстояния.

Введение

Изучение падения космических тел на Землю представляет особый интерес с точки зрения оценки астероидной и кометной опасности [Adushkin, Nemchinov, 1994; Binzel, 2000]. Сопровождающие это явление процессы, такие как образование ударной волны, мощное тепловое излучение, насыщение атмосферы пылью и аэрозолями, образование кратеров и сейсмических волн при падении космических тел на поверхность Земли и цунами при падении в акваторию, представляют серьезную опасность для человека и результатов его деятельности. В связи с тем, что крупномасштабные события такие, например, как Тунгусское событие 30.06.1908 г., весьма редки, основное внимание исследователей нацелено на изучение метеороидов – космических тел размером от ~ 1 до ~ 50 м.

К настоящему времени известно значительное количество работ, посвященных, как правило, численному моделированию различных эффектов, вызываемых падением метеоритов [Адушкин и др., 2004; Лосева, Кузьмичева, 2010; Кузьмичева и др., 2014; Немчинов и др., 1999; Рыбнов и др., 2014; Светцов, Шувалов, 2014; Adushkin, Nemchinov, 1994; Beech, Forshini, 1999; Broshten, 1983] и др. В основномизучается локальная область сильных возмущений, в которой протекают процессы, количественная характеристика которых позволяет оценивать энергию события, а именно: свечение воздушных масс, ударная волна, акустический сигнал, наведенные сейсмические колебания и т.д. В меньшей степени освещаются вопросы, связанные с вариацией физических полей – магнитного и электрического.

Имеющиеся данные свидетельствуют о том, что падение метеоритов в земной атмосфере вызывает электромагнитные возмущения [Немчинов и др., 1999; Adushkin, Nemchinov, 1994]. Предложен ряд механизмов и разработаны модели процесса возбуждения электромагнитного сигнала [Ковалева и др., 2014; Broshten, 1991; Keay, 1992; Price, Blum, 2000] и др. Однако теоретические модели не в полной мере описывают многие свойства низкочастотных электромагнитных сигналов, что связано с явным недостатком наблюдательной информации, которая востребована не только при тестировании и совершенствовании теории, но и при разработке новых подходов к описанию физических процессов, сопровождающих падение метеоритов.

В настоящей работе анализируются результаты инструментальных наблюдений за геомагнитными вариациями, вызванными падением Липецкого (21.06.2018 г.)¹ и Челябинского (15.02.2013 г.) [Бернгардт и др., 2013; Ророva et al., 2013] метеоритов.

Исходные данные

В качестве исходных привлекались данные регистрации трех компонент магнитной индукции на земной поверхности, выполненные в среднеширотных обсерваториях международной сети станций ИНТЕРМАГНЕТ, а также в геофизической обсерватории «Михнево» ИДГ РАН (МНV) [Адушкин и др., 2016; Гвишиани и др., 2015] (Табл. 1). Расположение пунктов магнитной регистрации приведено на рис. 1.

События 15.02.2013 г. (Челябинское) и 21.06.2018 г. (Липецкок) произошли в условиях спокойной геомагнитной обстановки (Табл. 2), что существенно упростило анализ геомагнитных вариаций, вызванных падением космических тел.

¹www.vestivrn.ru

Наименование пункта	Обозначение	Широта, град.	Долгота, град.	Расстояние от места падения метеорита, км		
наблюдения				Липецкое событие	Челябинское событие	
Арти*	ARS	56.433	58.56	~ 1300	~ 100	
Бельск*	BEL	51.84	20.79	~ 1200	~ 2500	
Борок*	BOX	58.07	38.23	~ 670	~ 1300	
Киев*	KIV	50.72	30.3	~ 630	~ 2000	
Львов*	LVV	49.9	23.75	~ 1000	~ 2400	
Михнево	MHV	54.94	37.73	~ 200	~ 1500	
Новосибирск*	NVS	54.85	83.23	~ 2700	~ 1500	

Таблица 1. Пункты геомагнитных наблюдений

Примечание: звездочкой обозначены магнитные обсерватории ИНТЕРМАГНЕТ

Рис. 1. Расположение пунктов магнитной регистрации (звездочками обозначены места падения Липецкого (А) и Челябинского (В) метеоритов)

Таблица 2. Значения *К*-индекса геомагнитной активности по данным обсерватории MHV (www.idg-comp.chph.ras.ru/~mikhnevo/)

Дата	Время (UT)							
	0–3	3–6	6–9	9–12	12-15	15-18	18-21	21–24
15.02.2013 г	0	0	0	1	1	2	3	2
21.06.2018 г.	0	1	0	2	1	1	0	0

Подготовка данных для обработки и анализа заключалась в обнаружении и удалении выбросов (спайков) с привлечением критериев Хоглина [Hoaglin et al., 2000], Титьяна-Мура [Tietjen, Moore, 1972] и Граббса [Дубров, 2003]. Пропуски во временных реализациях, включая возникшие в результате удаления выбросов, удалялись при их незначительном количестве (1–5) с помощью линейной интерполяции, в случае единичных более продолжительных интервалов пропущенных значений для восстановления ряда применялось двойное преобразование Фурье [Грачев, 2004]. Для анализа использовались ряды цифровых данных, сформированные с дискретностью 1 мин.

Геомагнитные вариации при падении Липецкого и Челябинского метеоритов

Анализ результатов инструментальных наблюдений показывают, что падение метеоритов в атмосфере Земли сопровождается характерными вариациями магнитного поля. При этом следует отметить нелокальный характер вызванных геомагнитных вариаций, регистрируемых вплоть до расстояний ~ 2700 км. В качестве примера на рис. 2 представлен ход компонент *Bx*, *By* и *Bz* магнитной индукции вблизи земной поверхности в условиях обсерватории MHV в период падения Липецкого метеорита.

Рис. 2. Вариации компонент индукции геомагнитного поля в период падения Липецкого метеорита (регистрация в обсерватории MHV). Фоном помечен примерный период наведенных возмущений магнитного поля

На рис. 3 приведены горизонтальные компоненты магнитной индукции для этого же события по данным некоторых станций ИНТЕРМАГНЕТ. Примеры вариации

модуля индукции $B_0 = \sqrt{B_x^2 + B_y^2 + B_z^2}$ в период падения Челябинского метеорита по данным обсерваторий ИНТЕРМАГНЕТ приведены на рисунках 4 и 5.

На графиках рисунков 2 и 3 видно, что период падения метеорита характеризуется ярко выраженными вариациями компонент B_x и B_y (бухтообразное понижение) и, в частности, повышенными значениями компоненты B_z . Начало наведенных геомагнитных вариаций близко ко времени падения Липецкого метеорита $t_0 \sim 01:20$ UT [www.vestivrn.ru]. Максимальный геомагнитный эффект достигается с некоторой характерной для этого процесса задержкой [Кузьмичева, Лосева, 2010], которая в данном случае составляет около 5 мин. Затем величина вариаций магнитного поля возвращается к своим невозмущенным значениям. Амплитуда вари-

аций компонент B_x , B_y и B_z по записям в MHV составляет соответственно $B_x^* \sim 4.5$;

 $B_y^* \sim 3,5$ и $B_z^* \sim 3$ нТл. Отметим, что в относительных величинах наибольшие вариации испытывают горизонтальные компоненты вектора магнитной индукции.

Аналогичный вывод следует из данных рисунков 4 и 5, а именно: в период падения Челябинского метеорита $t_0 \sim 03:20$ UT [Емельяненко и др., 2013] наблюдаются выделяющиеся на фоне обычных повышенные вариации геомагнитного поля, причем, на значительных расстояниях от места падения космического тела (Табл. 3). При этом амплитуда наведенных изменений модуля вектора магнитной индук-

ции B_0^* (Табл. 3) колеблется в интервале от 0,5 до 3,5 нТл при неопределенности значений не хуже 15%.

Рис. 3. Вариации горизонтальных компонент магнитной индукции в период падения Липецкого метеорита (данные магнитных обсерваторий сети ИНТЕРМАГНЕТ: BEL, BOX и KIV). Фоном помечен примерный период наведенных возмущений магнитного поля

Таблица З	. Результаты	обработки	магнитных записей
-----------	--------------	-----------	-------------------

Обсерва- тория	<i>t</i> ₀ ,UT	Т, мин	<i>В</i> *, нТл	<i>В</i> *, нТл	<i>В</i> *нТл	<i>В</i> *нТл	<i>R</i> , км		
Челябинский метеорит									
MHV	3:19	19	1.6	1.3	0.4	1.2	~ 1500		
BEL	3:18	18	~ 1	1.4	1.4	1.5	~ 2500		
KIV	3:18	19	~ 1	0.5	0.4	0.5	~ 2000		
BOX	3:18	18	2.7	0.6	~ 4	~ 1	~ 1300		
LVV	3:19	15	~ 1	0.5	1.9	1.6	~ 2400		
ARS	3:18	10	1.9	-	_	0.8	~ 100		
NVS	3:19	14	1.2	2.1	~ 2	2.1	~ 1500		
Липецкий метеорит									
MHV	1:29	14	4.5	3.5	~ 3	2.7	~ 200		
BEL	1:28	17	4.8	0.3	~ 3	3.5	~ 1200		
KIV	1:27	15	3.5	~ 2	1.9	~ 2	~ 630		
BOX	1:29	13	7.3	3.1	0.8	1.9	~ 670		

Рис. 5. Вариации модуля индукции геомагнитного поля в период падения Челябинского метеорита (данные магнитных обсерваторий NVS, LVV и ARS). Фоном помечен примерный период наведенных возмущений магнитного поля

Результаты регистрации свидетельствуют о том, что длительность T наведенных геомагнитных вариаций изменяется в достаточно узком интервале от ~ 10 до ~ 19 мин (Табл. 3), что значительно превышает время свечения болидов (секунды – десятки секунд).

Рис. 6. Величина изменения модуля вектора магнитной индукции в зависимости от расстояния до места падения Липецкого (1) и Челябинского (2) метеороидов

Рис. 7. Зависимость длительности возмущенного периода от расстояния до места падения Липецкого (1) и Челябинского (2) метеороидов

Данные Табл. 3 представлены в графическом виде на рисунках 6 и 7 и свидетельствуют о том, что вне зависимости от расстояния до места падения космиче-

ского тела величина B_0^* не выходит за пределы интервала 0,5–3,5 нТл.

Оценка зависимости длительности возмущенного периода от расстояния до места падения Липецкого метеороида (рис. 7) дает:

$$T \approx 5.5 R^{0.15}$$
, мин.

где *R* выражено в км.

Заключение

В результате сбора и анализа данных показано, что падение метеоритов в атмосфере сопровождается нелокальным геомагнитным эффектом: наведенные вариации магнитного поля наблюдаются на значительном удалении (до ~ 2700 км) от места падения космического тела.

Анализ данных показал, что в целом падение метеоритов вызывает изменение модуля вектора магнитной индукции на величину 5–3,5 нТл вне зависимости от расстояния до места падения космического тела. При этом горизонтальные компоненты магнитной индукции уменьшаются бухтообразно с амплитудой до ~ 7 нТл.

Предложена оценочная зависимость длительности вызванных вариаций модуля вектора магнитной индукции от расстояния.

Теоретические и численные модели, описывающие возмущения верхней атмосферы, ионосферы и магнитосферы Земли, должны быть согласованы с данными наблюдений магнитных вариаций по пространству, продолжительности, интенсивности и соотношению компонент геомагнитного поля.

Исследования выполнены в рамках программы РАН (проект № 0146-2018-0004).

Литература

Адушкин В.В., Попова О.П., Рыбнов Ю.С., Кудрявцев В.И., Мальцев А.Л., Харламов В.А. Геофизические эффекты Витимского болида 24.09.2002 г. // Доклады академии наук. 2004. Т. 397. № 5. С. 685–688. Адушкин В.В., Овчинников В.М., Санина И.А., Ризниченко О.Ю. «Михнево»: от сеймостанции №1 до современной геофизической обсерватории // Физика Земли. 2016. № 1. С. 108–119.

Бернгардт О.И., Добрынина А.А., Жеребцов Г.А., Михалев А.В., Перевалова Н.П., Рятовский К.Г., Рахматуллин Р.А., Саньков В.А., Сорокин А.Г. Геофизические явления, сопровождавшие падение Челябинского метеороида // Доклады академии наук. 2013. Т. 452. 3. 2. С. 205–207.

Гвишиани А.Д., Лукьянова Р.Ю. Геоинформатика и наблюдения магнитного поля Земли: российский сегмент // Физика Земли. 2015. № 2. С. 3–20.

Грачев А.В. К восстановлению пропусков в экспериментальных данных // Вестник ННГУ им. Н.И. Лобачевского : Серия Радиофизика. Нижний Новгород: ННГУ, 2004. Вып. 2. С. 15–23.

Дубров А.М. Многомерные статистические методы: учебник для студентов экономических специальностей высших учебных заведений / А.М. Дубров, В.С. Мхитарян, Л.И. Трошин. М. : «Финансы и статистика», 2003. – 351 с.

Ковалева И.Х., Ковалев А.Т., Попова О.П., Рыбнов Ю.С., Поклад Ю.В., Егоров Д.В. Электромагнитные эффекты, генерируемые в ионосфере Земли при падении метеороида // Динамические процессы в геосферах. Вып. 5: сб. научн. тр. ИДГ РАН. М. : ГЕОС, 2014. С. 26–47.

Кузьмичева М.Ю., Лосева Т.В., Ляхов А.Н. Ионосферный эффект Челябинского события // Динамические процессы в геосферах. Вып. 5: сб. научн. тр. ИДГ РАН. М. : ГЕОС, 2014. С. 86–94.

Лосева Т.В., Кузьмичева М.Ю. Оценка геомагнитного эффекта при Тунгусском событии 1908 года // Физика межгеосферных взаимодействий: сб. научн. тр. ИДГ РАН. М. : ГЕОС, 2010. С. 261–269.

Немчинов И.В., Лосева Т.В., Меркин В.Г. Оценка геомагнитного эффекта при падении Тунгусского метеороида // Физические процессы в геосферах: их проявление и взаимодействие. М. : ИДГ РАН, 1999. С. 324–335.

Рыбнов Ю.С., Попова О.П., Харламов В.А. Оценка энергии Челябинского болида по спектру мощности длиннопериодных колебаний атмосферного давления // Динамические процессы в геосферах. Вып. 5: сб. научн. тр. ИДГ РАН. М. : ГЕОС, 2014. С. 78–85.

Светцов В.В., Шувалов В.В. Оценка сейсмического эффекта, вызванного падением Челябинского космического тела // Динамические процессы в геосферах. Вып. 5: сб. научн. тр. ИДГ РАН. М. : ГЕОС, 2014. С. 95–103.

Adushkin V.V., Nimchinov I.V. Consequences of impacts of cosmic bodies on the surface of the Earth // Hazards due to Comets and Asteroids / Ed. T. Gehrels. Tucson; London: Univ. Arizona Press, 1994. P. 721–778.

Beech M., Forshini L. A spacecharge model for electrophonic bursters // Astron. Astrophys. 1999. Vol. 345. L27–L31.

Binzel R.P. The Torino impact hazard scale // Planet. Space Sci. 2000. Vol. 48. P. 297–303. *Broshten V.A.* A magnetohydrodynamic mechanism for generating radio waves by bright fireballs // Sol. Sys. Res. 1983. Vol. 17. P. 70–74.

Broshten V.A. Electrical and electromagnetic phenomena associated with the meteor flight // Sol. Sys. Res. 1991. Vol. 25. P. 93–104.

Hoaglin D.C., Mosteller F., Tukey J.W. Understanding robust and exploratory data analysis. 2nd edition. New-York: John Wiley & Sons, 2000. – 472 p.

Keay C.S.I. Electrophonic sounds from large meteor fireballs // Meteoritics. (1992). Vol. 27. P. 144–148.

Popova O.P. and 59 co-authors. Chelyabinsk airburst, damage assessment, meteorite recovery and characterization // Science. 2013. Vol. 342. Issue 6162. P. 1069–1073.

Price C, Blum M. ELF/VLF radiation produced by the 1999 Leonid meteors // Earth, Moon, Planets. 2000. Vol. 82/83. P. 545–554.

Tietjen G.L., Moore R.H. Some Grubbs-type statistics for the detection of several outliers // Technometrics. 1972. Vol. 14. P. 583–597.

УДК 550.3+ 550.4+551.558; 614.2; 614.7

ГЕОФИЗИЧЕСКИЕ ЭФФЕКТЫ УРАГАНА В МОСКВЕ 21 АПРЕЛЯ 2018 г.

А.А. Спивак, Ю.С. Рыбнов, В.А. Харламов

ИДГ РАН

Приведены результаты инструментальных наблюдений за микробарическими пульсациями атмосферного давления, вариациями электрического поля и микросейсмического фона в условиях г. Москвы в период урагана 21.04.2018 г. Установлено, что сильные возмущения атмосферы в виде холодного атмосферного фронта, сопровождающегося увеличением скорости ветра до штормовых значений, вызвали значительные амплитудные вариации напряженности электрического поля и акустических колебаний. При этом примерно за 6 часов до наступления урагана обнаружены повышенные вариации указанных геофизических полей с характерными изменениями спектральных характеристик их вариаций, что при накоплении данных может рассматриваться как прогностический признак приближающегося урагана.

Введение

Исследование поведения геофизических полей в периоды сильных атмосферных возмущений представляет значительный интерес как с точки зрения получения информации о закономерностях развития процессов, протекающих в геосферах в условиях взаимодействия и преобразования физических полей, так и для разработки критериев, которые могут быть положены в основу разработки прогностических признаков катастрофических процессов и явлений в среде обитания человека. При этом отмечается явный недостаток данных инструментальных наблюдений, что является существенным препятствием на пути построения теоретических моделей сильных атмосферных явлений [Голицын, 2013; Спивак и др., 2018].

Настоящая работа является продолжением ранее выполненной работы [Спивак и др., 2018] и посвящена изучению вариаций электрического и акустического полей, вызванных сильным возмущением атмосферы ураганом в г. Москве 21.04.2018 г.